A large ozone-circulation feedback and its implications for global warming assessments
نویسندگان
چکیده
State-of-the-art climate models now include more climate processes which are simulated at higher spatial resolution than ever1. Nevertheless, some processes, such as atmospheric chemical feedbacks, are still computationally expensive and are often ignored in climate simulations1,2. Here we present evidence that how stratospheric ozone is represented in climate models can have a first order impact on estimates of effective climate sensitivity. Using a comprehensive atmosphere-ocean chemistry-climate model, we find an increase in global mean surface warming of around 1°C (~20%) after 75 years when ozone is prescribed at pre-industrial levels compared with when it is allowed to evolve self-consistently in response to an abrupt 4×CO2 forcing. The difference is primarily attributed to changes in longwave radiative feedbacks associated with circulation-driven decreases in tropical lower stratospheric ozone and related stratospheric water vapour and cirrus cloud changes. This has important implications for global model intercomparison studies1,2 in which participating models often use simplified treatments of atmospheric composition changes that are neither consistent with the specified greenhouse gas forcing scenario nor with the associated atmospheric circulation feedbacks3-5.
منابع مشابه
On the role of ozone feedback in the ENSO amplitude response under global warming
The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can...
متن کاملMonitoring the impact of global warming on wheat cultivation in the Mughan Plain (Germi) Using the atmospheric circulation model
Global warming and temperature rise will have many effects on different sectors, including agriculture, the warming of the earth will increase the rate of evaporation, and consequently the increase in the demand for agricultural products will increase. In this study, in order to monitor the effect of global warming on Mughan Plain wheat, using the LARS-WG model as a relatively inexpensive and a...
متن کاملHow Dry is the Tropical Free Troposphere? Implications for Global Warming Theory
The humidity of the free troposphere is being increasingly scrutinized in climate research due to its central role in global warming theory through positive water vapor feedback. This feedback is the primary source of global warming in general circulation models (GCMs). Because the loss of infrared energy to space increases nonlinearly with decreases in relative humidity, the vast dry zones in ...
متن کاملClimate response to the increase in tropospheric ozone since preindustrial times:
The reliance on global mean radiative forcing as an index of climate change is questionable for highly inhomogeneous forcing agents such as tropospheric ozone or aerosols. Using a general circulation model, we have carried out a pair of equilibrium climate simulations with previously calculated present-day and preindustrial ozone distributions. We show that the radiative forcing of 0.49 W m-2 d...
متن کامل